Back

SQL, Homomorphisms and Constraint Satisfaction Problems

107 points9 hoursphilipzucker.com
mbid7 hours ago

The post mentions the idea that querying a database D can be understood algebraically as enumerating all morphisms Q -> D, where Q is the "classifying" database of the query, i.e. a minimal database instance that admits a single "generic" result of the query. You can use this to give a neat formulation of Datalog evaluation. A Datalog rule then corresponds a morphism P -> H, where P is the classifying database instance of the rule body and H is the classifying database instance for matches of both body and head. For example, for the the transitivity rule

  edge(x, z) :- edge(x, y), edge(y, z).
you'd take for P the database instance containing two rows (a_1, a_2) and (a_2, a_3), and the database instance H contains additionally (a_1, a_3). Now saying that a Database D satisfies this rule means that every morphism P -> D (i.e., every match of the premise of the rule) can be completed to a commuting diagram

  P --> D
  |    ^
  |   /
  ⌄  /
  Q 
where the additional map is the arrow Q -> D, which corresponds to a match of both body and head.

This kind of phenomenon is known in category theory as a "lifting property", and there's rich theory around it. For example, you can show in great generality that there's always a "free" way to add data to a database D so that it satisfies the lifting property (the orthogonal reflection construction/the small object argument). Those are the theoretical underpinnings of the Datalog engine I'm sometimes working on [1], and there they allow you to prove that Datalog evaluation is also well-defined if you allow adjoining new elements during evaluation in a controlled way. I believe the author of this post is involved in the egglog project [2], which might have similar features as well.

[1] https://github.com/eqlog/eqlog [2] https://github.com/egraphs-good/egglog

babel_7 hours ago

For anyone curious: the performance difference between Clang and GCC on the example C solution for verbal arithmetic comes down to Clang's auto-vectorisation (deducing SIMD) whilst GCC here sticks with scalar, which is why the counter brings Clang closer in line to GCC (https://godbolt.org/z/xfdxGvMYP), and it's actually a pretty nice example of auto-vectorisation (and its limitations) in action, which is a fun tangent from this article (given its relevance to high-performance SMT/SAT solving for CSP)

lovasoa6 hours ago

The topic of huge queries on tiny databases makes me think of this recent discussion on the SQLite forum: https://sqlite.org/forum/forumpost/0d18320369

Someone had an issue because SQLite failed to optimize the following query

    select * from t where x = 'x' or '' = 'x'
Someone said that SQLite could not optimize out the "or '' = 'x'" because it would be too expensive to compute. Which is obviously true only for huge queries on tiny datasets.
hinkley6 hours ago

Why would it be too expensive to optimize out static subexpressions?

jjice4 hours ago

My guess is that the expense can be tricky to calculate since the additional optimization prior to executing the query may take longer than if the query was just able to run (depending on the dataset, of course). I wonder if it's too expensive to calculate a heuristic as well, so it just allows it to execute.

Just a guess.

recursive6 hours ago

It's not obviously true at all. Optimizing out `'' = 'x'` can be done for a fixed cost regardless of record count.

lovasoa4 hours ago

Optimizing out static expressions can be done in linear time at best. So if the number of clauses in WHERE is huge and the size of the underlying table is tiny (such as in the examples shown in the article we are commenting on), it will be better not to run the optimization.

But of course, in normal life, outside of the world of people having fun with Homomorphisms, queries are much smaller than databases.

recursive4 hours ago

Parsing the expression in the first place is already linear time.

jiggawatts5 hours ago

> SQLite

Well... there's your problem. SQLite is not a general-purpose RDBMS, it is marketed as a replacement for "fopen()", a purpose for which it excels.

A similar product is the Microsoft Jet database engine, used in products such as Microsoft Exchange and Active Directory. Queries have to be more-or-less manually optimised by the developer, but they run faster and more consistently than they would with a general-purpose query engine designed for ad-hoc queries.

cerved52 minutes ago

I hate Jet with a vengeance